تشخیص نفوذ شبکه با استفاده از الگوریتمهای یادگیری ماشین: (مجموعه داده UNSW-NB15)
در این تحقیق از پنج الگوریتم یادگیری ماشین(جنگل تصادفی، درخت تصمیمگیری، رگرسیون لجستیک، k نزدیکترین همسایه و شبکه عصبی مصنوعی) برای تشخیص حمله استفاده شده است. در این تحقیق برای ارزیابی الگوریتمها از مجموعه داده مرجع UNSW-NB15 استفاده شده است. یک مجموعه داده نسبتاً جدید که حاوی مقدار زیادی داده ترافیک شبکه با 9 کلاس از حملات شبکه است. نتایج در محیط ژوپیتر(Jupyter) پایتون نشان میدهد که الگوریتم جنگل تصادفی به بالاترین درصد صحت دست یافته است. همچنین از تکنیک نمونهبرداری بیش از حد اقلیت ترکیبی(SMOTE) برای مشکل عدم تعادل کلاسها استفاده شده است. پس از اعمال SMOTE، الگوریتم جنگل تصادفی با 24 ویژگی انتخاب شده با روش تجزیه و تحلیل مؤلفههای اصلی(PCA) به درصد صحت بالاتری دست یافته است.
- لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.